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Abstract The primary signal used in all current passive microwave precipitation retrieval algorithms over
land is the depression of the instantaneous brightness temperature (TB) caused by ice scattering. This study
presents a new methodology to retrieve instantaneous precipitation rate over land by using TB temporal
variation (ΔTB) at 19 GHz, which primarily reflects the surface emissivity variation due to the precipitation
impact. As a proof-of-concept, we exploit observations from five polar-orbiting satellites over the Southern
Great Plains of the United States. Results show that ΔTB at 19 GHz correlate well with the instantaneous
precipitation rate. Further analysis shows that ΔTB at 19 GHz is better correlated with the precipitation rate
when multiple satellite observations are used due to the much shorter revisit time for a certain location. The
retrieved instantaneous precipitation rate over Southern Great Plains from ΔTB at 19 GHz reasonably agrees
with the surface radar observations, with the correlation, the root-mean-square error and the bias being
0.49, 2.39 mm/hr, and 6.54%, respectively. Future work seeks to combine the ice scattering signal at high
frequencies and this surface emissivity variation signal at low frequencies to achieve an optimal retrieval
performance.

Plain Language Summary Current precipitation estimation technique via satellite passive
microwave observations links the hydrometers in the air to the surface precipitation intensity. That is, the
cold brightness temperature (TB) at high-frequency channels (e.g., 85 GHz) indicates heavy precipitation.
The TB observations from low-frequency channels such as 19 GHz are largely discounted. This study
presents a new idea to link the surface condition variation to the precipitation intensity, by using TB
temporal variation (𝛿TB) at 19 GHz from five polar-orbiting satellites. Results show that 𝛿TB at 19 GHz
correlate well with the precipitation rate. The estimated instantaneous precipitation rate over the Southern
Great Plains of United States from 𝛿TB at 19 GHz reasonably agrees with the ground radar observations, with
the correlation, the root-mean-square error, and the bias at 0.49, 2.39 mm/hr, and 6.54%, respectively.

1. Introduction

Instantaneous precipitation rate retrieval by passive microwave radiometers over land is very challenging.
Over the ocean where the microwave emissivity is low, the brightness temperature (TB) increase due to the
radiometrically warm raindrops is apparent. However, the high surface emissivity over land largely masks the
information from liquid water (e.g., Ferraro et al., 1994; Wang et al., 2009; Wilheit, 1986; You et al., 2014). In
addition, the land surface emissivity is highly inhomogeneous, which makes it difficult to physically model
the land surface emissivity accurately on the global scale Tian et al. (2015).

Despite these challenges, precipitation retrieval algorithms have been successfully developed and imple-
mented for several decades over land. For example, some algorithms directly establish a relation between
satellite observed TB at high-frequency channels (e.g., 85 GHz) and precipitation rate through various statis-
tical techniques, including regression (Ferraro & Marks, 1995; Laviola & Levizzani, 2011; McCollum & Ferraro,
2003; Wang et al., 2009), neural networks (Islam et al., 2014; Staelin & Chen, 2000), and Bayes’ theorem (Petty
& Li, 2013; You et al., 2015, 2016). The reference precipitation rates are usually from surface radar observations
(Ferraro & Marks, 1995; You et al., 2015, 2016), ground gauge observations (Kongoli et al., 2015), or spaceborne
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precipitation radar observations (Islam et al., 2014; Petty & Li, 2013; Wang et al., 2009). Precipitation retrieval
algorithms have also been developed by including the radiative transfer model (e.g., Aonashi et al., 2009; Kidd
et al., 2016; Kummerow et al., 2015; G. Liu & Curry, 1992; Sano et al., 2013; Seo et al., 2016). Often, the radiative
transfer model is employed to simulate the observed TBs. To do the simulation, the hydrometeor profiles are
either derived from a cloud-resolving model (Kidd et al., 2016; Sano et al., 2013) or satellite-based precipitation
radar observations (Kummerow et al., 2015).

These precipitation retrieval algorithms differ greatly in detail. However, they share one common feature: link-
ing the scattering signal from the hydrometeors aloft to the precipitation at the surface (Petty, 1995; You et al.,
2011; You, Wang, et al., 2017).

This study demonstrates later that TB temporal variation (ΔTB) at 19 GHz, primarily the surface emissiv-
ity variation signal, is well correlated with the precipitation rate. Therefore, it provides a new technique to
retrieve precipitation rate over land from satellite microwave observations. Using observations from eight
polar-orbiting satellites, You, Peters-Lidard, et al. (2017) recently showed thatΔTB at high-frequency channels
(e.g., 89 and 183±7 GHz) can significantly improve the precipitation retrieval performance over snow-covered
areas, by minimizing the surface emissivity variation influence. In contrast, this study utilizes the surface
emissivity variation signal contained in the TB temporal variation at 19 GHz to retrieve precipitation rate.

Previous works have used the surface emissivity and soil moisture to estimate the precipitation rate. For exam-
ple, You et al. (2014) estimated the rainfall rate using the emissivity at 10 GHz in a case study over the Southern
Great Plains (SGP) of the United States. Brocca et al. (2014) demonstrated that it is possible to estimate the
surface rain rate from soil moisture variation. Koster et al. (2016) applied this method (converting soil mois-
ture to rain rate) globally, using soil moisture products from the Soil Moisture Active Passive mission, the Soil
Moisture and Ocean Salinity satellite mission, and the Advanced Scatterometer mission. They concluded that
the estimated rain rates are, on average, highly correlated with the in situ gauge-observed rain rates with a
square of the correlation coefficient of 0.6, at the 100 km and 5-day resolution. Birman et al. (2015) showed
that the daily rainfall estimation from surface emissivity at 89 GHz agrees reasonably well with surface gauge
observations in France. Incorporating soil moisture information to correct the satellite rainfall accumulation
estimates has been documented to reduce errors (Crow et al., 2009; Pellarin et al., 2013).

Key differences between these works and the current study are the following: (1) Previous studies based on
the emissivity and soil moisture are retrieving precipitation accumulation (e.g., daily). However, this study
is attempting to retrieve the instantaneous precipitation, which is a much more challenging issue. (2) This
study exploits TB temporal variation to retrieve the precipitation rate, which significantly alleviates surface
contamination (details in following sections). And (3) we use a satellite constellation (five satellites) in this
study to obtain a reasonably high temporal resolution from microwave radiometer observations.

It is known that low-frequency channels (e.g., 10, 19, and 37 GHz) have a poorer spatial resolution compared
with the high-frequency channels (e.g., 89 GHz). Nevertheless, they are more sensitive to the surface emissivity
change due to the precipitation impacts. The purpose of this study is not to show that the low-frequency
channels can replace the high-frequency channels. Rather, we show that TB temporal variation at 19 GHz
primarily reflects the surface emissivity variation due to the precipitation impacts, which may complement
the ice scattering signals from high-frequency channels in future precipitation algorithm development. In
addition, we choose 19 GHz because it is the lowest frequency commonly available from the five satellites
used in the current study. Therefore, it is most sensitive to the surface characteristics, compared with other
commonly available frequencies (e.g., 37 and 89 GHz).

We would like to emphasize that this study does not directly use 19 GHz itself to retrieve the instantaneous
rain rate. Instead, we use the temporal variation of 19 GHz from five satellites, which is well correlated with
the instantaneous rain rate. Additionally, it is known that the 19-GHz channel does not necessarily perform
better than the 89-GHz channel over land, and our later analysis shows this point. However, it does have its
merits in providing additional information, for example, when the 89 GHz is not available (e.g., WindSat).

The data used in this study are described in section 2. The methodology, including the definition of the TB
temporal variation, is provided in section 3. Section 4 begins with a case study to show the response of TB
temporal variation at 19 GHz to the instantaneous rainfall. Then, we present the correlation geospatial distri-
bution between rain rate and TB at 19 and 89 GHz, and between rain rate and TB temporal variation at 19 and
89 GHz. We also discuss several factors that affect the correlation between rain rate and TB temporal variation,
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Table 1
Mean Footprint Resolution at Each Frequency Used in This Study From SSMIS, AMSR2, and GMI

SSMIS AMSR2 GMI

Frequency Resolution Frequency Resolution Frequency Resolution

19.4 (V/H) 59 km 18.7 (V/H) 22 km 18.7 (V/H) 15 km

91.7 (V) 14 km 89.0 (V) 5 km 89.0 (V) 7 km

Note. SSMIS = Special Sensor Microwave Imager/Sounder; AMSR2 = Advanced Microwave Scanning
Radiometer 2; GMI = Global Precipitation Measurement Microwave Imager.

including the temperature variation, the time differences between raining and nonraining observations, and
the soil texture. Finally, the conclusions are summarized in section 5.

2. Data

The TB used in this study is from five instruments, including the Special Sensor Microwave Imager/Sounder
(SSMIS) onboard the Defense Meteorological Satellite Program F16, F17, and F18 satellites; the Advanced
Microwave Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation Mission-Water satellite;
and the Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPM core satellite.

As a proof-of-concept, we use three channels from each of these five sensors (Table 1). They are 19.4 (V/H) and
91.7 (V) from SSMIS, and 18.7 (V/H) and 89.0 (V) from AMSR2 and GMI. V and H represent the vertical and hor-
izontal polarization, respectively. As shown in Table 1, all these channels have different footprint resolutions
(Draper et al., 2015). The slightly different frequency between SSMIS and GMI (AMSR2) also results in different
TBs for the same surface background and hydrometeor profile (Yang et al., 2014). Section 3 below demon-
strates a method to bring all these frequencies to a similar resolution. We adjust the TBs at similar frequencies
from SSMIS and AMSR2 to the GMI frequencies, by the simultaneous conical overpass (SCO) technique (Yang
et al., 2011) and a linear regression method. Section 3 presents more details regarding this adjustment. For
convenience, we do not distinguish the slight frequency differences among these five sensors from now on,
and these channels are referred to as V19, H19, and V89.

The objective of this study is to show that the temporal variation of H19 (primarily the surface emissivity
variation signal) is well correlated with the instantaneous precipitation rate. Physically, TB at the horizontal
polarization is more sensitive to the land surface characteristics than its counterpart at the vertical polar-
ization, because the horizontal polarized channel is more affected by the polarization of the water particles
at/near the surface. Therefore, we choose to show the temporal variation of H19, instead of V19. As a compar-
ison to the surface emissivity variation signal, the temporal variation of V89 (mostly the ice particle scattering
signature) is also computed throughout this work. In addition, SSMIS, AMSR2, and GMI have 24, 14, and 13
channels, respectively. We only selected the V19, H19, and V89 channels because 19 and 89 GHz are the lowest
and highest commonly available frequency from these five sensors.

The precipitation rate data are from the Multi-Radar/Multi-Sensor System (MRMS), which is at 1-km and 2-min
spatial and temporal resolution (Zhang et al., 2016). Collocation between the MRMS precipitation rate and TB
is discussed in section 3.

Data used in this study are all from March 2014 to December 2016 over SGP of the United States (95–105∘W,
30–45∘N). We choose this period of time since observations from all aforementioned five satellites are avail-
able. SGP is selected because of the large dynamic emissivity variation due to the precipitation effect (Tian
et al., 2015; Turk et al., 2016; You et al., 2014).

The ancillary data used in this study includes Ku-band precipitation radar (KuPR, 13.6 GHz) onboard GPM
core satellite (Seto et al., 2013). The precipitation profile observed by KuPR is utilized in the radiative trans-
fer model experiments to distinguish the surface emissivity effect from the hydrometeor effect. Specifically,
we select all the KuPR rain rate profiles over the targeted region from March 2014 to December 2016. Then
these profiles are averaged according to different surface rain rates (e.g., 1 mm/hr; see Figure 9). In the radia-
tive transfer model simulation, the surface temperature, temperature, and relative humidity profiles are from
Modern-Era Retrospective Analysis for Research and Applications, version 2, which are all at 0.625∘ ×0.5∘

latitude-longitude spatial resolution. The temporal resolution for the surface temperature and profiles are 1
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and 3 hr, respectively. We used the National Ice Center’s Interactive Multisensor Snow and Ice Mapping Sys-
tem daily snow cover map at 24 km to screen out the possible snow cover observations. In addition, we also
use the gauge-corrected hourly MRMS data for the daily rainfall accumulation computation.

3. Methodology
3.1. Definition of TB Temporal Variation
TB temporal variation (ΔTB) for any channel is defined as

ΔTB = TBt0
− TBt−1

(1)

Δt = t0 − t−1 (2)

where TBt0
is the current TB associated with precipitation and TBt−1

is the preceding TB at the same location
without precipitation. A grid box is judged as a precipitating grid box when the TB difference between V19
and V89 is greater than 8 K (Kummerow et al., 2001; Wang et al., 2009). Otherwise, the grid box is considered
as a nonprecipitating grid box. By using the 8 K as the threshold value, the probability of detection is 69.24%
with the false alarm rate at 6.92% in the targeted region, according to MRMS observations. Δt is the time
difference between these two observations. By using these five satellites, Δt varies from several minutes to as
long as 24 hr. We discuss later the varying Δt’s effect on the correlation between ΔTB and precipitation rate
in section 4.4.

This study computes the temporal variation of H19 (hereinafter referred to as ΔH19) and of V89 (hereinafter
referred to as ΔV89). We demonstrate later in the section 4.5 from radiative transfer model simulation exper-
iments that the ΔH19 is largely the surface emissivity variation signal due to the precipitation impact, while
ΔV89 is primarily the ice scattering signal.

3.2. Aggregate the Higher-Resolution TB
Table 1 shows the mean footprint resolution of SSMIS, AMSR2, and GMI at 19 and 89 GHz (Draper et al., 2015).
The 19 GHz of SSMIS has the largest footprint size at 59 km. This study aggregates the finer footprint resolution
by simply averaging to roughly match this resolution. Specifically, we average 7 (59 × 59/22/22 ≈ 7) pixels of
19 GHz from AMSR2, 16 pixels of 19 GHz from GMI, 18 pixels of 91.7 GHz from SSMIS, 140 pixels of 89 GHz from
AMSR2, and 71 pixels of 89 GHz of GMI to approximately match the resolution of 19 GHz of SSMIS (59 km). For
the precipitation rate, we simply average the closest 3,481 (59 × 59 = 3481) 1-km MRMS precipitation rate
pixels for each TB observation at the closest time.

3.3. Intersatellite Adjustment
After the footprint sizes of these five sensors being brought to a similar resolution, the TBs from SSMIS and
AMSR2 for each channel are adjusted to the GMI channels. The GMI channels are taken as the reference
channel because AMSR2 and SSMIS are calibrated against GMI (Berg et al., 2016).

The linear relationship between the GMI TB at each channel and the TB from AMSR2 or SSMIS at the similar
frequency is assumed, and it takes the following form:

TBadj
s,c = 𝛽0 + 𝛽1 × TBobs

s,c (3)

where s is from 1 to 4, which stands for sensors of SSMIS onboard F16, F17, and F18, and AMSR2. And c is from
1 to 3, which represents channels of H19, V19, and V89 GHz.

The SCO technique by Yang et al. (2011) is used to obtain the coefficients 𝛽0 and 𝛽1. The idea of SCO technique
is that simultaneous measurements at a certain location from two different sensors at similar frequencies
should be highly correlated. This study takes the GMI observations as the reference. Two measurements, one
from GMI and the other one from any of other four sensors, are called a SCO pair, if the field-of-view location is
less than 1 km and the field-of-view time is less than 2 min. These threshold values are chosen by considering
the trade-off between the sample size and the SCO pair accuracy.

To obtain enough SCO pairs, we choose the land portion of the region from 70–130∘W, 30–50∘N. The scatter
plots between these SCO pairs for each channel are shown in Figure 1. It is evident that the majority of the SCO
pairs are close to the 1-1 line. The coefficients trained by these SCO pairs are listed in Table 2. Most adjusted
TBs (∼97.0%) deviate less than 2 K from the original TBs.
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Figure 1. Each column represents the scatter plots of the simultaneous conical overpass pairs between GMI and F16-SSMIS (a–c), between GMI and F17-SSMIS
(d–f ), between GMI and F18-SSMIS (g–i), and between GMI and AMSR2 (j–l). These simultaneous conical overpass pairs are based on data over the land portion
of (70–130∘W, 30–50∘N) from March 2014 to December 2016, at the nominal resolution of 59 km. GMI = Global Precipitation Measurement Microwave Imager;
SSMIS = Special Sensor Microwave Imager/Sounder.

3.4. Definition of the Same Location
The purpose of this study is to show that ΔH19 is well correlated with the precipitation rate. Therefore, for a
certain location, the number of observations should be high enough to obtain a meaningful temporal vari-
ation. To this end, the data are gridded into 0.5∘ latitude-longitude box. Any pixel in the same grid box is
taken as the observation for the same location. We choose the 0.5∘ resolution because the mean footprint size
(59 km) is close to the 0.5∘ resolution.

Approaches used in this study are very similar to You, Peters-Lidard, et al. (2017). A major difference between
this study and You, Peters-Lidard, et al. (2017) is whether to consider the environmental variation from TBt−1

to TBt0
. Specifically, this study first uses the same ΔTB definition as You, Peters-Lidard, et al. (2017). Later, we

modify ΔTB definition in section 4 to consider the environmental variation (e.g., temperature) from TBt−1
to

TBt0
, since we are able to more accurately compute the land surface emissivity at low-frequency channels

under the nonprecipitating scenarios, compared to at high-frequency channels. In addition, this study grids
satellite observations into a 0.5∘ latitude-longitude box due to the larger footprint size at 19 GHz, compared
to the 0.25∘ latitude-longitude box in You, Peters-Lidard, et al. (2017).

Table 2
Coefficients Used in Equation (3) to Adjust Brightness Temperatures From SSMIS and AMSR2 to GMI
Frequency

F16-SSMIS F17-SSMIS F18-SSMIS AMSR2

𝛽0 𝛽1 𝛽0 𝛽1 𝛽0 𝛽1 𝛽0 𝛽1

H19 13.94 0.94 12.08 0.96 3.18 0.99 7.83 0.97

V19 12.13 0.96 8.53 0.97 4.89 0.98 8.96 0.96

V89 28.13 0.90 10.10 0.97 12.77 0.95 13.17 0.95

Note. SSMIS = Special Sensor Microwave Imager/Sounder; AMSR2 = Advanced Microwave Scanning
Radiometer 2; GMI = Global Precipitation Measurement Microwave Imager.
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Figure 2. Time series from March 2014 to December 2015 the 0.5∘ grid box of (100.5–101∘W, 41.5–42∘ N) for (a) H19,
(b) V89, (c) ΔH19, (d) ΔV89, and (e) precipitation rate. The red circles in panels (a) and (b) represent the precipitation
observations identified by V19 − V89 greater than 8 K.

4. Results
4.1. Time Series Analysis
Figure 2 shows the time series of H19 (Figure 2a) and V89 (Figure 2b), and the corresponding precipitation rate
(Figure 2e) over the 0.5∘ grid box of (100.5–101∘W, 41.5–42∘N). There are 5,483 observations at this location
from March 2014 to December 2015. The red circles in Figures 2a and 2b represent the precipitation observa-
tions identified by V19−V89 greater than 8 K. The red circles in Figure 2a (observations with precipitation) do
not separate themselves from the blue curve. It basically means that the precipitation signal from H19 itself
is very weak. In contrast, the TB depression at V89 (Figure 2b) is evident. That is, the observations with red
circles correspond well with the precipitation occurrence (the blue bar in the Figure 2e).

The poor correlation between H19 and precipitation rate is immediately evident in the scatter plot (Figure 3a),
where the correlation coefficient is only −0.12. The poor correlation (−0.12) is the reason why previous work
primarily used the scattering signal at high-frequency channels (e.g., 89 GHz) for the precipitation retrieval
over land. In contrast, V89 correlates strongly with precipitation rate with a correlation coefficient of −0.66
(Figure 3c).

Figures 2c and 2d show the time series ofΔH19 andΔV89 (defined in equation (1). TheΔH19 andΔV89 are set
as 0 for the observations judged as nonprecipitating observations (V19 − V89 < 8 K). It is very clear that both
ΔH19 (Figure 2c) and ΔV89 (Figure 2d) correspond very well with the precipitation occurrence (Figure 2e).

There are 180 precipitation observations out of 5,483 total observations from March 2014 to December 2015
over this grid box. The vast majority of the ΔH19 associated with precipitation (159 out of 180 records) are
less than 0, and the TB depression at ΔH19 can be as large as 40 K. There indeed exists a small portion of
the observations (21 out of 180 records) with ΔH19 greater than 0. For the ΔV89, all values are negative. We
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Figure 3. (a) Scatter plot between H19 and precipitation rate over the grid box of (100.5–101∘W, 41.5–42∘N) from March
2014 to December 2015. (b) Same as (a) except for ΔH19. (c) Same as (a) except for V89. (d) Same as (a) except for ΔV89.
The red circles in Figure 3c represent several falsely identified precipitation observations with very cold TB at 89 GHz
(∼240 K), which correspond to a very small ΔV89 (close to 0 K) in Figure 3d (red circles). See more discussions in the text.

explain the positive and negative TB values of ΔH19 and ΔV89 by a radiative transfer model simulation in
section 4.5.

The much better correlation between ΔH19 and precipitation rate (−0.69), compared with that between H19
itself and precipitation rate (−0.12), is obvious in Figure 3 (cf. Figures 3b and 3a). It is worth noting that the
correlation between ΔH19 and precipitation rate (−0.69; Figure 3b) is slightly worse than that between ΔV89
and precipitation rate (−0.76; Figure 3d). In the following sections, we show that the highly variable time dif-
ference (Δt) is largely responsible for the worse performance of ΔH19. Another possible reason is that the
signal magnitude of ΔH19 is weaker than that of ΔV89. The correlation between ΔV89 and precipitation rate
(−0.76) is also better than that between V89 and precipitation rate (−0.66; Figure 3c) due to the mitigation
of cold surface contamination. We use the daily Ice Mapping System snow cover map to filter out possible
snow-covered observations. However, there may still exist some observations associated with snow cover on
the ground due to the mismatch between the daily snow cover map and the instantaneous satellite observa-
tions. Specifically, the red circles associated with cold V89 at∼240 K in Figure 3c represent the falsely identified
precipitating observations. The influence of the falsely identified precipitation observations due to the cold
surface is largely reduced when using ΔV89, because the ΔV89 of these falsely identified observations are
close to 0 (Figure 3d). More discussions regarding the mitigation of the surface contamination at 89 GHz are
contained in You, Peters-Lidard, et al. (2017).

In summary, it is demonstrated that ΔH19 is well correlated with the precipitation rate, while H19 itself has
very weak correlation with the precipitation rate.

4.2. Correlation Over the SGP
The correlation between ΔH19 and precipitation rate (Figure 4a), between H19 and precipitation rate
(Figure 4b), between ΔV89 and precipitation rate (Figure 4d), and between V89 and precipitation rate
(Figure 4e), are computed over SGP. The precipitation occurrence number, judged by the scattering index
method (SI = V19 − V89), varies from 40 to 404 in different grid boxes.

As discussed above, it is clear that ΔH19 is much better correlated with the precipitation rate than H19 itself
(cf. Figures 4a and 4b). The majority of the correlation coefficients (64.8%) between ΔH19 and precipitation
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(a) (b) (c)

(d) (e) (f)

Figure 4. (a) Correlation coefficients between ΔH19 and Multi-Radar/Multi-Sensor System (MRMS) precipitation rate.
(b) Correlation coefficients between H19 and MRMS precipitation rate. (c) Correlation coefficients between ΔH19sim and
MRMS precipitation rate. (d) Correlation coefficients between ΔV89 and MRMS precipitation rate. (e) Correlation
coefficients between V89 and MRMS precipitation rate. (f ) Correlation coefficients between ΔV89sim and MRMS
precipitation rate.

rate are negative (less than −0.4). As shown in the case study, most ΔH19 decreases due to the impact of
precipitation. Mathematically, this explains why ΔH19 and precipitation rate is negatively correlated. Physi-
cally, precipitation usually increases the soil moisture and therefore leads to a depression in emissivity which
results in a TB depression. On the other hand, out of the 600 correlation coefficients, there are 14 positive
ones. These positive correlation coefficients caused by (1) the combined effect of surface emissivity variation
and hydrometeors emission/scatter in the air, which we explain in detail in section 4.5; and (2) cold surfaces
misidentified as precipitation. The false positive correlation between H19 itself and precipitation rate is espe-
cially obvious in the top left corner of Figure 4b. These false positive correlations are generally caused by cold
surface contamination (e.g., snow on the ground).

Over SGP, the vast majority of the correlation coefficients between ΔV89 and precipitation rate (Figure 4d)
are less than −0.7. Obviously, the scattering signature is better correlated with the precipitation than the sur-
face emissivity variation signal. In the following sections, we demonstrate that the correlation between ΔH19
and precipitation rate is highly dependent on the Δt variation, while the correlation between ΔV89 and pre-
cipitation rate is relatively independent from the Δt variation. Even though five satellite observations are
exploited in this study, theΔt is still highly variable, which can change from several minutes to more than 12 hr.
The highly variable Δt has a larger negative impact on the correlation between ΔH19 and precipitation rate
than that between ΔV89 and precipitation rate, because ΔH19 is more sensitive to the surface characteristics
than ΔV89.

Another interesting phenomenon is that ΔV89 is better correlated with the precipitation rate than V89 itself,
which is particularly evident over west of 103∘W. As mentioned previously, in these regions, the ΔV89 can
more effectively mitigate the surface contamination, especially under the light precipitation scenario (You,
Peters-Lidard, et al., 2017).

4.3. Temperature Variation Influence
In section 3, we define the ΔTB as TBt0

− TBt−1
. In this definition, we do not consider the temperature (surface

temperature and temperature profile) variation from t−1 to t0. In other words, it explicitly assumes that the
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Figure 5. (a) Histogram of the time difference (Δt in equation (2) when using five sensors, including SSMIS onboard F16,
F17, and F18; AMSR2; and GMI. (b) Same as (a) except when using GMI only. SSMIS = Special Sensor Microwave
Imager/Sounder; AMSR2 = Advanced Microwave Scanning Radiometer 2; GMI = Global Precipitation Measurement
Microwave Imager.

temperature information at time t0 is the same as that at time t−1. This assumption may lead to an error in the
ΔTB estimate when the temperature varies from t−1 to t0, especially when Δt is large (e.g., > 12 hr) between
these two observations.

To consider the temperature variation, ΔTB may be calculated in the following way:

ΔTB = TBt0
− TBsim

t0
(4)

where TBt0
is still the observed TB under the precipitating conditions. TBsim

t0
is the simulated TB at t0 by using

the emissivity calculated at t−1 (under the nonprecipitating condition). Specifically, the emissivity at 19 and
89 GHz is calculated at t−1 under the nonprecipitating condition by using the temperature information at t−1.
Then the emissivity values at 19 and 89 GHz are used to calculate TBsim

t0
by using the temperature information

at t0. By doing so, the surface temperature variation from t−1 to t0 is taken into consideration. From now on,
ΔTB computed in equation (4) for H19 and V89 is referred as to ΔH19sim and ΔV89sim, respectively.

A radiative transfer model (G. Liu, 1998) computes the emissivity under the nonprecipitating conditions. This
model calculates the TBs at different microwave frequencies through the discrete ordinate method at varying
stream numbers. In the current simulation, the stream number is set as 4. The water vapor absorptions from
both line and continuum contributions are considered in this model. The temperature information used in the
radiative transfer model calculation is from Modern-Era Retrospective Analysis for Research and Applications,
version 2.

By considering the temperature variation effect, it is noted that the correlation between ΔH19sim and precip-
itation rate is improved (cf. Figures 4a and 4c). For example, the overall mean correlation coefficient in the
targeted region from ΔTB19 is −0.40, while it increases to −0.47 using ΔH19sim. Improvement has also been
made for the V89 channel, but to a lesser degree (cf. Figures 4d and 4f).

4.4. Influence of Varying Time Difference (𝚫t)
The objective of this study is to show the temporal variation of TB at 19 GHz (ΔH19) is well correlated with the
precipitation rate. Ideally, observations from a satellite constellation with the same configuration or a geosta-
tionary microwave radiometer would be most suitable. However, such observations currently are not available
or even planned. Therefore, we exploit observations from five low Earth orbit satellites in the GPM constella-
tion. By doing this, the Δt defined in equation (2) is highly variable. This section demonstrates the effect of
variableΔt on the correlation betweenΔH19 and precipitation rate, and betweenΔV89 and precipitation rate.

Figure 5 shows the histogram of the time differences (i.e.,Δt). By using five satellite observations, about 99.3%
of the Δts are less than 12 hr. In contrast, about 78.8% of the Δts are greater than 12 hr when only GMI obser-
vations are used. To show the variableΔt effect, we calculate the correlation betweenΔH19 and precipitation
rate, and betweenΔV89 and precipitation rate, corresponding to differentΔts (Figure 6). The correlation coef-
ficients between ΔH19 and precipitation rate decrease quickly from −0.5 with Δt at 2 hr to −0.21 with Δt at
24 hr. This result implies that with increasing time differences between t−1 and t0, it is more likely that the
surface conditions (e.g., soil moisture variation and precipitation in between these two observations) have
changed. Therefore, ΔH19 more likely contains other information besides the current precipitation effect.
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Figure 6. Correlation between ΔH19 and precipitation rate, and between
ΔV89 and precipitation rate, under different Δt conditions. The time
differences (Δt) are binned into smaller intervals as follows: 0–2, 2–4, … ,
14–16, and 16–24 hr.

In contrast, the correlation between ΔV89 and precipitation rate remains
at about −0.7 (blue curve in Figure 6), regardless of the Δt variation. The
relative independence of ΔV89 indicates that V89 is less affected by the
surface characteristics variation in this region, compared with H19. There-
fore, using single satellite observations to computeΔV89 may be sufficient
in this region.

Figure 6 shows that correlations betweenΔH19 and the precipitation rates
decrease as Δt increases. To further understand this phenomenon, we
compute the number of precipitation events (Figure 7a), and the percent-
age of the current precipitation being the only precipitation (Figure 7b),
corresponding to different Δt intervals, from 0–1, 1–2, … , 11–12 hr.

As expected, Figure 7a shows that there are more precipitation events
with a larger Δt. For example, on average, there are only 1.01 precipita-
tion events when Δt is 1 hr. In contrast, there are 2.78 precipitation events
when Δt is 12 hr. When the precipitation-free scene at t−1 is less than 1 hr
apart from the current precipitating scene at t0, 99.12% of the time the
current precipitation is the only precipitation event in the time period of
Δt (Figure 7b). When Δt increases to 12 hr, the percentage decreases to
43.75%, meaning that 56.25% of the time there are other precipitation

events in the time period of 12 hr. When there are other precipitation events occurring in the time period of
Δt,ΔH19 not only reflects impact of the current precipitation event, it may also include the impact from other
precipitating events in between Δt. Therefore, the correlation between ΔH19 and the current precipitation
rate becomes weaker as Δt increases.

Since ΔH19 may reflect the precipitation accumulation in the time period of Δt, it is possible to estimate the
precipitation accumulation from ΔH19. In fact, previous studies estimated the precipitation accumulation
(e.g., daily accumulation) from emissivity at low frequencies channels (You et al., 2014) or from soil moisture
(Brocca et al., 2014). However, further analysis shows that the correlation betweenΔH19 and the precipitation
accumulation in the time period of Δt is not necessarily stronger than that between ΔH19 and the instanta-
neous precipitation, because the correlation betweenΔH19 and the precipitation accumulation is dependent
on the time interval in which the precipitation accumulation is computed. More research is necessary to
pinpoint the optimal precipitation accumulation time interval.

4.5. Surface Emissivity Effect Versus Hydrometeor Effect
Under precipitating conditions, it is impossible to know the exact value of the emissivity because TB reflects
the combined effect from both the surface background emission and scattering/emission from the hydrom-
eteors aloft. To show the possible emissivity variability over the targeted region, we adopt the method in
Ferraro et al. (2013). That is, we show the precipitation-free emissivities at H19 and V89, and TBs for the same
channels, corresponding to different previous 1-day precipitation accumulation amounts. We can reasonably
assume that the emissivity variation under the precipitating conditions resembles the emissivity variation
under the precipitation-free scenes, but with different 1-day precipitation accumulation amounts.
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Figure 7. (a) Number of precipitation events in the time period of Δt (between t−1 and t0). (b) Percentage of the
precipitation event at t0 being the only precipitation event in the time period of Δt.
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Figure 8. Corresponding to different previous 1-day precipitation amounts (represented by P) at P = 0, 0 < P < 5, 5 < P < 10, and P > 10 mm: (a–d) mean
emissivity at H19 under the precipitation-free scene; (e–h) mean H19 under the precipitation-free scene; (i–l) mean emissivity at V89 under the precipitation-free
scene; (m–p) mean V89 under the precipitation-free scene. The 1-day precipitation amount is calculated from gauge-corrected hourly Multi-Radar/Multi-Sensor
System data.

Figure 8a shows that the emissivity for H19 can drop as much as 0.05 from 0.95 to 0.90, or even 0.1 in some
areas, corresponding to 10-mm 1-day accumulation precipitation (cf. Figures 8a and 8d). Correspondingly,
H19 TB can drop as much as 20 K (cf. Figures 8e and 8h). In contrast, the emissivity at V89 and V89 itself have a
much smaller variation magnitude, corresponding to the same amount previous 1-day precipitation accumu-
lation (cf. Figures 8i and 8l, and Figures 8m and 8p). This study shows the concept of using surface emissivity
temporal variation signal at the 19 GHz due to the precipitation impact.

As mentioned previously, it is very difficult to separate the surface emissivity contribution from the hydrome-
teor contribution to the satellite-observed TB, under the precipitating conditions. To disentangle the surface
emissivity from hydrometeor effects and better understand the effect from each of them, we conduct follow-
ing radiative transfer simulation experiments: (1) Simulate TB at H19 and V89 with the surface precipitation
rate increasing from 0 to 20 mm/hr, corresponding to the surface emissivity at 0.8, 0.9, 0.95, and 1.0. By doing
this, we can determine the hydrometeor effect. (2) Simulate TB at H19 and V89 with the surface emissivity
decreasing from 1.0 to 0.8, corresponding to 0, 0.5, and 5 mm/hr precipitation rate. By doing this, we can deter-
mine the surface emissivity effect. The radiative transfer model, developed by G. Liu (1998), is used for the
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Figure 9. (a) Simulated brightness temperature (TB) at H19 when precipitation rate increases from 0 to 20 mm/hr,
corresponding to surface emissivity at 0.8, 0.9, 0.95, and 1.0. (b) Simulated TB at H19 when surface emissivity decreases
from 1.0 to 0.8, corresponding to precipitation rate at 0, 0.5, and 5 mm/hr. (c) Simulated TB at V89 when precipitation
rate increases from 0 to 20 mm/hr, corresponding to surface emissivity at 0.8, 0.9, 0.95, and 1.0. (d) Simulated TB at V89
when surface emissivity decreases from 1.0 to 0.8, corresponding to precipitation rate at 0, 0.5, and 5 mm/hr.

aforementioned experiments. Additionally, for simplicity the particles above (below) the freezing level height
are considered as ice (liquid) particles, and no mixed phase particles are considered in the simulation.

It is found that H19 decreases about 25 K from 292 to 267 K (Figure 9a, magenta curve), and about 12 K from
278 to 266 K (Figure 9a, blue curve), with the precipitation rate increasing from 0 to 20 mm/hr, corresponding
to the emissivity at 1.0 and 0.95, respectively. On the contrary, H19 increases from 237 to 266 K (Figure 9a, red
curve) when the precipitation rate increases from 0 to 20 mm/hr, with emissivity at 0.8. This partially explains
why ΔH19 is positively correlated with the precipitation rate. The green curve in Figure 9a shows that H19
increases slightly when the precipitation rate increases from 0 to 8 mm/hr, then decreases slightly when the
precipitation rate increases from 8 to 20 mm/hr. It is clear that TB at H19 can either increase or decrease due
to the hydrometeor effect, depending on the different surface emissivity situations. The largest possible TB
depression at H19 caused by hydrometeors is probably less than 12 K, since the mean emissivity at H19 under
dry condition is less than 0.95 in the targeted region (Figure 8a).

Figure 9b demonstrates that H19 can decrease as much as 55 K from about 292 K to about 237 K under the
nonprecipitating condition (Figure 9b, red curve) when emissivity decreases from 1.0 to 0.8. Similar magni-
tudes of the TB depression are observed under the light precipitation scenario (Figure 9b, green curve). Under
heavier precipitation (Figure 9b, blue curve), H19 can decrease about 20 K.

Compared with the mixed hydrometeor effect on H19, the surface emissivity depression caused by precipita-
tion can only lead to a TB depression at H19, and the magnitude of the depression can be as large as 55 K. Our
results show that the vast majority of ΔH19s are negative, and its magnitude can be as large as 40 K. From the
radiative transfer model simulation experiments, we conclude that the surface emissivity depression plays a
larger role in the vast majority of negative ΔH19s. That is, the signal from ΔH19 is largely from the surface
emissivity depression, and the hydrometeor scattering/emission signal contributes less to ΔH19.

Compared with the surface emissivity variation signal, it is very clear that the hydrometeor scattering signal
is responsible for the TB variation at V89. Figure 9c shows that TB at V89 does not vary when the precipitation
rate is larger than 2 mm/hr, regardless of the surface emissivity values. Similar results can be found in Figure 9d.
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Table 3
Correlation Between MRMS Precipitation Rate (PR) and ΔH19sim, Between PR and ΔV89sim, Between PR and ΔH19,
and Between PR and ΔV89, Conditioned on the Soil Texture Type, Over the Southern Great Plains of the United
States (95–105∘W, 30–45∘N) From March 2014 to December 2016

Soil texture type Corr(PR, ΔH19sim) Corr(PR, ΔV89sim) Corr(PR, ΔH19) Corr(PR, ΔV89)

Sand −0.48 −0.67 −0.47 −0.66

Sandy loam −0.40 −0.68 −0.39 −0.66

Silt loam −0.45 −0.69 −0.43 −0.67

Loam −0.45 −0.67 −0.42 −0.65

Silty clay loam −0.37 −0.68 −0.34 −0.67

Clay loam −0.38 −0.68 −0.32 −0.65

Clay −0.41 −0.68 −0.40 −0.65

Note. MRMS = Multi-Radar/Multi-Sensor System.

For example, V89 only decreases about 10 K when emissivity decreases from 1.0 to 0.8, with the precipitation
rate at 0.5 mm/hr.

To summarize, the radiative transfer model simulation shows that the ΔH19 largely reflects the surface emis-
sivity variation. In contrast, the hydrometeor scattering signal is responsible for the TB depression of ΔV89.
This channel is surface blind with the precipitation rates greater than 2 mm/hr.

4.6. Soil Texture Dependence
The previous section shows that the signal fromΔH19 is essentially the surface emissivity variation due to the
precipitation impacts. A key factor affecting the surface emissivity variation is the soil texture (e.g., content
and structure) . Therefore, this section explores the possible influence of the soil texture on the correlation
between ΔH19 and precipitation rate. As a comparison, the soil texture influence on the correlation between
ΔV89 and precipitation rate is also investigated.

Of the 16 soil texture types present in the hybrid State Soil Geographic/Food and Agriculture Organization soil
texture data set provided by the National Center for Atmospheric Research for the Noah land surface model
(Miller & White, 1998; Reynolds et al., 2000), 10 types are represented in the targeted region. They are sand
(63), loamy sand (5), sandy loam (103), silt loam (142), loam (129), silty clay loam (48), clay loam (58), silty clay
(8), clay (41), and other (3). The number in the parenthesis following the soil texture types is the 0.5∘ grid box
number for each class. For example, the soil type is sand in 63 grid boxes, out of 600 grid boxes in the whole
targeted region. The following calculation omits the classes of loamy sand, silty clay and other, due to the
limited sample size.

The correlation betweenΔH19sim and precipitation rate (Figure 4c) is averaged for each soil texture type. Sim-
ilar computation is performed for the correlation between ΔV89sim and precipitation rate (Figure 4f ). Results
are listed in Table 3. The correlations between ΔH19sim and precipitation rate have a general decreasing trend
from the sand soil to the clay soil. We hypothesize that the better correlation from the sand soil is due to the
quicker response of the sand to the instantaneous precipitation impact, compared with the clay soil. Another
possible reason is that precipitation events in-between Δt (other than the current precipitation event) may
have a smaller impact on the sandy soils, because water drains away faster through the sandy soils, compared
with clay soils. As shown in Figure 7a, when the Δt is larger than 1 hr, precipitation events other than the
current precipitation event likely occur. More work is necessary to fully understand the underlying physical
reason for this behavior.

In contrast, the soil texture type has almost no influence on the correlation betweenΔV89sim and precipitation
rate, as indicated by the almost constant correlation coefficients (∼ −0.68) between them. It is worth men-
tioning that using the correlation coefficients between ΔH19 and precipitation rate (Figure 4a), and between
ΔV89 and precipitation rate (Figure 4d) generates very similar results (see last two columns of Table 3).

4.7. Precipitation Retrieval Over the SGP
The ability of ΔH19 to retrieve precipitation is investigated by using the independent data in 2016. As a
proof-of-concept, a simple linear regression line is fitted between the ΔH19 and precipitation rate using the
training data set from 2014 to 2015 in each 0.5 grid box. As comparisons, similar procedures are applied to
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Figure 10. Scatter plots between surface radar observed precipitation rate (reference) and (a) retrieved precipitation
rate from H19; (b) retrieved precipitation rate from ΔH19; (c) retrieved precipitation rate from V89; and (d) retrieved
precipitation rate from ΔV89. RMS = root-mean-square; MRMS = Multi-Radar/Multi-Sensor System.

H19, V89 and ΔV89 to retrieve the precipitation rate. Then the fitted regression line in each grid box is used
to retrieve the precipitation rate in 2016, where the MRMS precipitation rate is taken as the reference.

Figure 10 shows the overall retrieval results over SGP. The retrieved precipitation rate fromΔH19 has a correla-
tion of 0.49 with MRMS. Root-mean-square error is about 2.39 mm/hr, and the bias is 6.54% (Figure 10b). The
retrieval result from H19 itself (Figure 10a) performs noticeably worse, as indicated by a much smaller corre-
lation of 0.28. It is noted that the bias from H19 (−1.01%) is smaller than that from ΔH19 (6.54%), because the
larger positive bias at the lower end of the precipitation rate and the larger negative bias at the higher end of
the precipitation rate are canceled out each other in the retrieval result of H19 (Figure 10a).

The retrieval results from V89 (Figure 10c) and ΔV89 (Figure 10d) are obviously better, compared with ΔH19.
The highly variable Δt likely affects the ΔH19’s performance, because ΔH19 is much more sensitive to the
surface characteristics variation than ΔV89. Previous analysis shows that the magnitude of the correlation
between ΔH19 and precipitation rate decreases quickly along with the Δt increase. This again suggests that
a denser low earth orbit microwave constellation or a geostationary microwave radiometer could help to
improve the performance of ΔH19 for the precipitation retrieval. In addition, we show that the correlation
between ΔH19 and precipitation rate is dependent on the soil texture type, which has little influence on the
correlation between ΔV89 and precipitation rate.

5. Conclusions and Discussions

This study extends our previous work (You, Peters-Lidard, et al., 2017) on temporal changes in high-frequency
TBs to demonstrate the potential value of low-frequency channels to improve precipitation rate retrievals
over land. For this study, we use 3-year (2014–2016) observations over SGP from surface radar measured
precipitation rate and five satellites observed TBs, including SSMIS onboard F16, F17, and F18; AMSR2;
and GMI.
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Over the whole study region,ΔH19 and precipitation rate is well correlated with the majority of the correlation
coefficients less than−0.4. The correlation can be further improved by considering the temperature temporal
variation through the radiative transfer model simulation. It is also noted that the correlation from V89 orΔV89
is stronger than that from ΔH19. The relatively worse performance of the ΔH19 is due to this signal being
more sensitive to the surface characteristics than ΔV89. Even with observations from five sensors, Δt varies
from several minutes to more than 12 hr. It is shown that the correlation between ΔH19 and precipitation
rate substantially weakens as Δt increases. We suggest that the observations from a denser low Earth orbit
microwave constellation or a hypothetical geostationary microwave radiometer can improve the correlation
between ΔH19 and precipitation rate due to its high temporal resolution.

We further analyze the signal source of the ΔH19. Results show that the surface emissivity depression caused
by the precipitation is largely responsible for the ΔH19 variation, while the hydrometeor scattering/emission
effect contributes much less to the ΔH19 behavior. In contrast, the TB at 89 GHz is surface blind under the
moderate and heavy precipitation scenarios (e.g.,> 2 mm/hr in Figure 9c), and it is the hydrometeor scattering
effect that results in the TB depression at 89 GHz, which is well documented in the literature (Ferraro & Marks,
1995; McCollum & Ferraro, 2003; Wang et al., 2009; You et al., 2015, 2016).

Further analysis shows that the correlation between ΔH19 and precipitation rate varies over different soil
texture types, with the largest correlation for the sand soil type. In contrast, soil texture has almost no influence
on the correlation between ΔV89 and precipitation rate.

As a proof-of-concept, a linear regression precipitation retrieval is performed over SGP by using the inde-
pendent data in 2016. On average, the retrieved precipitation rate from ΔH19 has a correlation of 0.49, a
root-mean-square error of 2.39 mm/hr and a bias of 6.54% , compared with the surface radar observations.
These statistics are much better than those from H19 itself. However, it is noted that performance from
ΔV89 is better than that from ΔH19, partially due to the larger negative influence to ΔH19 from the highly
variable time difference (Δt) between two observations. As a proof-of-concept, this study only uses five satel-
lites to derive the TB temporal variation. In fact, several other currently operational radiometers carry the
low-frequency channels at ∼19 GHz, including Advanced Microwave Sounding Unit-A, Advanced Technol-
ogy Microwave Sounder, WindSat, and FengYun-3 Microwave Radiometer Imager. By using all observations
from these radiometers (10+), it could significantly increase the temporal resolution, and therefore, the per-
formance of ΔH19 is expected to improve greatly. By doing so, the previous overpasses of all used sensors
(five in the current study) need to be processed and stored, which can take longer time compared with the
retrieval algorithm for a single sensor.

Finally, it is not our purpose to claim that the surface emissivity signal from ΔH19 is stronger than the scatter-
ing signal from either ΔV89 or V89 itself. In fact, results in Figure 10 show that the scattering signal over the
targeted region is stronger than the surface emissivity variation signal from ΔH19. The primary objective of
this study is to show thatΔH19 largely reflects the surface emissivity variation due to the precipitation impact.
Therefore, it provides an independent signal source for precipitation retrieval, which may complement the
scattering signal from high-frequency channels under certain situations. For example, in the warm rain sys-
tems there are few or no ice particles. Therefore, the scattering signal at high-frequency channels is rather
weak, which leads to a poor precipitation retrieval result for algorithms solely dependent on the ice scattering
signature (C. Liu & Zipser, 2009; Sohn et al., 2013; You & Liu, 2012). In addition, Hamada et al. (2015) showed
that a large scattering signal does not necessarily indicate heavy precipitation. Our study shows that it is pos-
sible to use the signal from the surface emissivity variation, as reflected in TB temporal variation derived from
low-frequency channels, to measure the instantaneous precipitation rate, which currently is not considered in
the instantaneous precipitation retrieval. Future work seeks to combine these two signal sources (scattering
from the hydrometeors aloft and surface emission variation due to the precipitation) to achieve an optimal
precipitation retrieval performance.
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